Найти расстояние между точками с координатами. Расстояние от точки до точки, формулы, примеры, решения


Расчет расстояний между точками по их координатам на плоскости элементарен, на поверхности Земли — немного посложнее: мы рассмотрим измерение расстояния и начального азимута между точками без проекционных преобразований. Для начала разберемся в терминологии.

Введение

Длина дуги большого круга – кратчайшее расстояние между любыми двумя точками находящимися на поверхности сферы, измеренное вдоль линии соединяющей эти две точки (такая линия носит название ортодромии) и проходящей по поверхности сферы или другой поверхности вращения. Сферическая геометрия отличается от обычной Эвклидовой и уравнения расстояния также принимают другую форму. В Эвклидовой геометрии, кратчайшее расстояние между двумя точками – прямая линия. На сфере, прямых линий не бывает. Эти линии на сфере являются частью больших кругов – окружностей, центры которых совпадают с центром сферы. Начальный азимут — азимут, взяв который при начале движения из точки А, следуя по большому кругу на кратчайшее расстояние до точки B, конечной точкой будет точка B. При движении из точки A в точку B по линии большого круга азимут из текущего положения на конечную точку B постоянно меняется. Начальный азимут отличен от постоянного, следуя которому, азимут из текущей точки на конечную не меняется, но маршрут следования не является кратчайшим расстоянием между двумя точками.

Через любые две точки на поверхности сферы, если они не прямо противоположны друг другу (то есть не являются антиподами), можно провести уникальный большой круг. Две точки, разделяют большой круг на две дуги. Длина короткой дуги – кратчайшее расстояние между двумя точками. Между двумя точками-антиподами можно провести бесконечное количество больших кругов, но расстояние между ними будет одинаково на любом круге и равно половине окружности круга, или π*R, где R – радиус сферы.

На плоскости (в прямоугольной системе координат), большие круги и их фрагменты, как было упомянуто выше, представляют собой дуги во всех проекциях, кроме гномонической, где большие круги — прямые линии. На практике это означает, что самолеты и другой авиатранспорт всегда использует маршрут минимального расстояния между точками для экономии топлива, то есть полет осуществляется по расстоянию большого круга, на плоскости это выглядит как дуга.

Форма Земли может быть описана как сфера, поэтому уравнения для вычисления расстояний на большом круге важны для вычисления кратчайшего расстояния между точками на поверхности Земли и часто используются в навигации. Вычисление расстояния этим методом более эффективно и во многих случаях более точно, чем вычисление его для спроектированных координат (в прямоугольных системах координат), поскольку, во-первых, для этого не надо переводить географические координаты в прямоугольную систему координат (осуществлять проекционные преобразования) и, во-вторых, многие проекции, если неправильно выбраны, могу привести к значительным искажениям длин в силу особенностей проекционных искажений. Известно, что более точно описывает форму Земли не сфера, а эллипсоид, однако в данной статье рассматривается вычисление расстояний именно на сфере, для вычислений используется сфера радиусом 6372795 метров, что может привести к ошибке вычисления расстояний порядка 0.5%.

Формулы

Существует три способа расчета сферического расстояния большого круга. 1. Сферическая теорема косинусов В случае маленьких расстояний и небольшой разрядности вычисления (количество знаков после запятой), использование формулы может приводить к значительным ошибкам связанным с округлением. φ1, λ1; φ2, λ2 — широта и долгота двух точек в радианах Δλ — разница координат по долготе Δδ — угловая разница Δδ = arccos {sin φ1 sin φ2 + cos φ1 cos φ2 cos Δλ} Для перевода углового расстояния в метрическое, нужно угловую разницу умножить на радиус Земли (6372795 метров), единицы конечного расстояния будут равны единицам, в которых выражен радиус (в данном случае — метры). 2. Формула гаверсинусов Используется, чтобы избежать проблем с небольшими расстояниями. 3. Модификация для антиподов Предыдущая формула также подвержена проблеме точек-антиподов, чтобы ее решить используется следующая ее модификация.

Моя реализация на РНР

// Радиус земли define("EARTH_RADIUS", 6372795); /* * Расстояние между двумя точками * $φA, $λA - широта, долгота 1-й точки, * $φB, $λB - широта, долгота 2-й точки * Написано по мотивам http://gis-lab.info/qa/great-circles.html * Михаил Кобзарев < > * */ function calculateTheDistance ($φA, $λA, $φB, $λB) { // перевести координаты в радианы $lat1 = $φA * M_PI / 180; $lat2 = $φB * M_PI / 180; $long1 = $λA * M_PI / 180; $long2 = $λB * M_PI / 180; // косинусы и синусы широт и разницы долгот $cl1 = cos($lat1); $cl2 = cos($lat2); $sl1 = sin($lat1); $sl2 = sin($lat2); $delta = $long2 - $long1; $cdelta = cos($delta); $sdelta = sin($delta); // вычисления длины большого круга $y = sqrt(pow($cl2 * $sdelta, 2) + pow($cl1 * $sl2 - $sl1 * $cl2 * $cdelta, 2)); $x = $sl1 * $sl2 + $cl1 * $cl2 * $cdelta; // $ad = atan2($y, $x); $dist = $ad * EARTH_RADIUS; return $dist; } Пример вызова функции: $lat1 = 77.1539; $long1 = -139.398; $lat2 = -77.1804; $long2 = -139.55; echo calculateTheDistance($lat1, $long1, $lat2, $long2) . " метров"; // Вернет "17166029 метров"

Статья взята с сайта

Здесь будет калькулятор

Расстояние между двумя точками на прямой

Рассмотрим координатную прямую, на которой отмечены 2 точки: A A A и B B B . Чтобы найти расстояние между этими точками, нужно найти длину отрезка A B AB A B . Это делается при помощи следующей формулы:

Расстояние между двумя точками на прямой

A B = ∣ a − b ∣ AB=|a-b| A B = ∣ a − b ∣ ,

где a , b a, b a , b - координаты этих точек на прямой (координатной прямой).

Ввиду того, что в формуле присутствует модуль, при решении не принципиально, из какой координаты какую вычитать (так как берется абсолютная величина этой разности).

∣ a − b ∣ = ∣ b − a ∣ |a-b|=|b-a| ∣ a − b ∣ = ∣ b − a ∣

Разберем пример, чтобы лучше понять решение подобных задач.

Пример 1

На координатной прямой отмечены точка A A A , координата которой равна 9 9 9 и точка B B B с координатой − 1 -1 − 1 . Нужно найти расстояние между этими двумя точками.

Решение

Здесь a = 9 , b = − 1 a=9, b=-1 a = 9 , b = − 1

Пользуемся формулой и подставляем значения:

A B = ∣ a − b ∣ = ∣ 9 − (− 1) ∣ = ∣ 10 ∣ = 10 AB=|a-b|=|9-(-1)|=|10|=10 A B = ∣ a − b ∣ = ∣ 9 − (− 1 ) ∣ = ∣ 1 0 ∣ = 1 0

Ответ

Расстояние между двумя точками на плоскости

Рассмотрим две точки, заданные на плоскости. Из каждой отмеченной на плоскости точки нужно опустить по два перпендикуляра: На ось O X OX O X и на ось O Y OY O Y . Затем рассматривается треугольник A B C ABC A B C . Так как он является прямоугольным ( B C BC B C перпендикулярно A C AC A C ), то найти отрезок A B AB A B , он же является и расстоянием между точками, можно с помощью теоремы Пифагора. Имеем:

A B 2 = A C 2 + B C 2 AB^2=AC^2+BC^2 A B 2 = A C 2 + B C 2

Но, исходя из того, что длина A C AC A C равна x B − x A x_B-x_A x B x A , а длина B C BC B C равна y B − y A y_B-y_A y B y A , эту формулу можно переписать в следующем виде:

Расстояние между двумя точками на плоскости

A B = (x B − x A) 2 + (y B − y A) 2 AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2} A B = (x B x A ) 2 + (y B y A ) 2 ,

где x A , y A x_A, y_A x A , y A и x B , y B x_B, y_B x B , y B - координаты точек A A A и B B B соответственно.

Пример 2

Необходимо найти расстояние между точками C C C и F F F , если координаты первой (8 ; − 1) (8;-1) (8 ; − 1 ) , а второй - (4 ; 2) (4;2) (4 ; 2 ) .

Решение

X C = 8 x_C=8 x C = 8
y C = − 1 y_C=-1 y C = − 1
x F = 4 x_F=4 x F = 4
y F = 2 y_F=2 y F = 2

C F = (x F − x C) 2 + (y F − y C) 2 = (4 − 8) 2 + (2 − (− 1)) 2 = 16 + 9 = 25 = 5 CF=\sqrt{(x_F-x_C)^2+(y_F-y_C)^2}=\sqrt{(4-8)^2+(2-(-1))^2}=\sqrt{16+9}=\sqrt{25}=5 C F = (x F x C ) 2 + (y F y C ) 2 = (4 − 8 ) 2 + (2 − (− 1 ) ) 2 = 1 6 + 9 = 2 5 ​ = 5

Ответ

Расстояние между двумя точками в пространстве

Нахождение расстояния между двумя точками в этом случае происходит аналогично предыдущему за исключением того, что координаты точки в пространстве задаются тремя числами, соответственно, в формулу нужно добавить еще и координату оси аппликат. Формула примет такой вид:

Расстояние между двумя точками в пространстве

A B = (x B − x A) 2 + (y B − y A) 2 + (z B − z A) 2 AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2} A B = (x B x A ) 2 + (y B y A ) 2 + (z B z A ) 2

Пример 3

Найти длину отрезка F K FK

Решение

F = (− 1 ; − 1 ; 8) F=(-1;-1;8)

F K = (x K − x F) 2 + (y K − y F) 2 + (z K − z F) 2 = (− 3 − (− 1)) 2 + (6 − (− 1)) 2 + (0 − 8) 2 = 117 ≈ 10.8 FK=\sqrt{(x_K-x_F)^2+(y_K-y_F)^2+(z_K-z_F)^2}=\sqrt{(-3-(-1))^2+(6-(-1))^2+(0-8)^2}=\sqrt{117}\approx10.8

По условию задачи нам нужно округлить ответ до целого числа.

Расстояние между двумя точками плоскости.
Системы координат

Каждая точка А плоскости характеризуется своими координатами (х, у). Они совпадают с координатами вектора 0А , выходящего из точки 0 - начала координат.

Пусть А и В - произвольные точки плоскости с координатами (х 1 y 1) и (х 2 , у 2) соответственно.

Тогда вектор AB имеет, очевидно, координаты (х 2 - х 1 , y 2 - y 1). Известно, что квадрат длины вектора равен сумме квадратов его координат. Поэтому расстояние d между точками А и В, или, что то же самое, длина вектора АВ, определяется из условия

d 2 = (х 2 - х 1) 2 + (y 2 - y 1) 2 .

d = \/ (х 2 - х 1 ) 2 + (y 2 - y 1 ) 2

Полученная формула позволяет находить расстояние между любыми двумя точками плоскости, если только известны координаты этих точек

Каждый раз, говоря о координатах той или иной точки плоскоси, мы имеем в виду вполне определенную систему координат х0у. А вообще-то систему координат на плоскости можно выбирать по-разному. Так, вместо системы координат х0у можно рассмотреть систему координат х"0у" , которая получается в результате поворота старых осей координат вокруг начальной точки 0 против часовой стрелки на угол α .

Если некоторая точка плоскости в системе координат х0у имела координаты (х, у), то в новой системе координат х"0у" она будет иметь уже другие координаты (х", у").

В качестве примера рассмотрим точку М, расположенную на оси 0х" и отстоящую от точки 0 на расстоянии, равном 1.

Очевидно, что в системе координат x0у эта точка имеет координаты (cos α , sin α ), а в системе координат х"0у" координаты (1,0).

Координаты любых двух точек плоскости А и В зависят от того, как в этой плоскости задана система координат. А вот расстояние между этими точками не зависит от способа задания системы координат. Это важное обстоятельство будет существенно использовано нами в следующем параграфе.

Упражнения

I. Найти расстояния между точками плоскости с координатами:

1) (3,5) и (3,4); 3) (0,5) и (5, 0); 5) (-3,4) и (9, -17);

2) (2, 1) и (- 5, 1); 4) (0, 7) и (3,3); 6) (8, 21) и (1, -3).

II. Найти периметр треугольника, стороны которого заданы уравнениями:

x + у - 1 = 0, 2x - у - 2 = 0 и у = 1.

III. В системе координат х0у точки М и N имеют координаты (1, 0) и (0,1) соответственно. Найти координаты этих точек в новой системе координат, которая получается и результате поворота старых осей вокруг начальной точки на угол в 30° против часовой стрелки.

IV. В системе координат х0у точки М и N имеют координаты (2, 0) и (\/ 3 / 2 , - 1 / 2) соответственно. Найти координаты этих точек в новой системе координат, которая получается в результате поворота старых осей вокруг начальной точки на угол в 30° по часовой стрелке.

Пусть задана прямоугольная система координат.

Теорема 1.1. Для любых двух точек М 1 (х 1 ;у 1) и М 2 (х 2 ;у 2) плоскости расстояние d между ними выражается формулой

Доказательство. Опустим из точек М 1 и М 2 перпендикуляры М 1 В и М 2 А соответственно

на оси Оу и Ох и обозначим через К точку пересечения прямых М 1 В и М 2 А (рис. 1.4). Возможны следующие случаи:

1)Точки М 1 , М 2 и К различны. Очевидно, что точка К имеет координаты (х 2 ;у 1). Нетрудно заметить что М 1 К = ôх 2 – х 1 ô, М 2 К = ôу 2 – у 1 ô. Т.к. ∆М 1 КМ 2 прямоугольный, то по теореме Пифагора d = М 1 М 2 = = .

2) Точка К совпадает с точкой М 2 , но отлична от точки М 1 (рис. 1.5). В этом случае у 2 = у 1

и d = М 1 М 2 = М 1 К = ôх 2 – х 1 ô= =

3) Точка К совпадает с точкой М 1 , но отлична от точки М 2 . В этом случае х 2 = х 1 и d =

М 1 М 2 = КМ 2 = ôу 2 - у 1 ô= = .

4) Точка М 2 совпадает с точкой М 1 . Тогда х 1 = х 2 , у 1 = у 2 и

d = М 1 М 2 = О = .

Деление отрезка в данном отношении.

Пусть на плоскости дан произвольный отрезок М 1 М 2 и пусть М ─ любая точка этого

отрезка, отличная от точки М 2 (рис. 1.6). Число l, определяемое равенством l = , называется отношением, в котором точка М делит отрезок М 1 М 2 .

Теорема 1.2. Если точка М(х;у) делит отрезок М 1 М 2 в отношении l, то координаты этой определяются формулами

х = , у = , (4)

где (х 1 ;у 1) ─ координаты точки М 1 , (х 2 ;у 2) ─ координаты точки М 2 .

Доказательство. Докажем первую из формул (4). Вторая формула доказывается аналогично. Возможны два случая.

х = х 1 = = = .

2) Прямая М 1 М 2 не перпендикулярна оси Ох (рис. 1.6). Опустим перпендикуляры из точек М 1 , М, М 2 на ось Ох и обозначим точки их пересечения с осью Ох соответственно Р 1 , Р, Р 2 . По теореме о пропорциональных отрезках = l.

Т.к. Р 1 Р = ôх – х 1 ô, РР 2 = ôх 2 – хô и числа (х – х 1) и (х 2 – х) имеют один и тот же знак (при х 1 < х 2 они положительны, а при х 1 > х 2 отрицательны), то

l = = ,

х – х 1 = l(х 2 – х), х + lх = х 1 + lх 2 ,

х = .

Следствие 1.2.1. Если М 1 (х 1 ;у 1) и М 2 (х 2 ;у 2) ─ две произвольные точки и точка М(х;у) ─ середина отрезка М 1 М 2 , то

х = , у = (5)

Доказательство. Так как М 1 М = М 2 М, то l = 1 и по формулам (4) получаем формулы (5).

Площадь треугольника.

Теорема 1.3. Для любых точек А(х 1 ;у 1), В(х 2 ;у 2) и С(х 3 ;у 3), не лежащих на одной

прямой, площадь S треугольника АВС выражается формулой

S = ô(х 2 – х 1)(у 3 – у 1) – (х 3 – х 1)(у 2 – у 1)ô (6)

Доказательство. Площадь ∆ АВС, изображённого на рис. 1.7, вычисляем следующим

S ABC = S ADEC + S BCEF – S ABFD .

Вычисляем площади трапеций:

S ADEC =
,

S BCEF =

S ABFD =

Теперь имеем

S ABC = ((х 3 – х 1)(у 3 + у 1) + (х 3 – х 2)(у 3 + у 2) - (х 2 – -х 1)(у 1 + у 2)) = (х 3 у 3 – х 1 у 3 + х 3 у 1 – х 1 у 1 + + х 2 у 3 – -х 3 у 3 + х 2 у 2 – х 3 у 2 – х 2 у 1 + х 1 у 1 – х 2 у 2 + х 1 у 2) = (х 3 у 1 – х 3 у 2 + х 1 у 2 – х 2 у 1 + х 2 у 3 –

Х 1 у 3) = (х 3 (у 1 – у 2) + х 1 у 2 – х 1 у 1 + х 1 у 1 – х 2 у 1 + у 3 (х 2 – х 1)) = (х 1 (у 2 – у 1) – х 3 (у 2 – у 1) + +у 1 (х 1 – х 2) – у 3 (х 1 – х 2)) = ((х 1 – х 3)(у 2 – у 1) + (х 1 – х 2)(у 1 – у 3)) = ((х 2 – х 1)(у 3 – у 1) –

- (х 3 – х 1)(у 2 – у 1)).

Для другого расположения ∆ АВС формула (6) доказывается аналогично, но может получиться со знаком «-». Поэтому в формуле (6) ставят знак модуля.


Лекция 2.

Уравнение прямой линии на плоскости: уравнение прямой с главным коэффициентом, общее уравнение прямой, уравнение прямой в отрезках, уравнение прямой, проходящей через две точки. Угол между прямыми, условия параллельности и перпендикулярности прямых на плоскости.

2.1. Пусть на плоскости задана прямоугольная система координат и некоторая линия L.

Определение 2.1. Уравнение вида F(x;y) = 0, связывающее переменные величины x и y, называется уравнение линии L (в заданной системе координат), если этому уравнению удовлетворяют координаты любой точки, лежащей на линии L, и не удовлетворяют координаты никакой точки, не лежащей на этой прямой.

Примеры уравнений линий на плоскости.

1) Рассмотрим прямую, параллельную оси Oy прямоугольной системы координат (рис. 2.1). Обозначим буквой A точку пересечения этой прямой с осью Ox, (a;o) ─ её ор-

динаты. Уравнение x = a является уравнением данной прямой. Действительно, этому уравнению удовлетворяют координаты любой точки M(a;y) этой прямой и не удовлетворяют координаты ни одной точки, не лежащей на прямой. Если a = 0, то прямая совпадает с осью Oy, которая имеет уравнение x = 0.

2) Уравнение x - y = 0 определяет множество точек плоскости, составляющих биссектрисы I и III координатных углов.

3) Уравнение x 2 - y 2 = 0 ─ это уравнение двух биссектрис координатных углов.

4) Уравнение x 2 + y 2 = 0 определяет на плоскости единственную точку O(0;0).

5) Уравнение x 2 + y 2 = 25 ─ уравнение окружности радиуса 5 с центром в начале координат.

Лекция: Формула расстояния между двумя точками; уравнение сферы


Расстояние между двумя точками


Для нахождения расстояния между двумя точками на прямой в предыдущем вопросе мы использовали формулу d = х 2 – х 1.


Но, что касается плоскости, дела обстоят иначе. Не достаточно просто найти разность координат. Для нахождения расстояния между точками по их координатам следует воспользоваться следующей формулой:

Например, если у Вас имеются две точки с некоторыми координатами, то найти расстояние между ними можно следующим образом:

А (4;-1), В (-4;6):

АВ = ((4 + 4) 2 + (-1 – 6) 2) 1/2 ≈ 10,6.

То есть для вычисления расстояния между двумя точками на плоскости необходимо найти корень из суммы квадратов разностей координат.


Если необходимо найти расстояние между двумя точками на плоскости, следует воспользоваться аналогичной формулой с дополнительной координатой:


Уравнение сферы


Для задания сферы в пространстве следует знать координаты её центра, а также её радиус, чтобы воспользоваться следующей формулой:

Данное уравнение соответствует сфере, центр которой находится в начале координат.


Если же центр сферы сдвинут на некоторое количество единиц по осям, то следует воспользоваться следующей формулой.