Методы решения дифференциального уравнения теплопроводности. Теплопроводность


Механика сплошных сред
Сплошная среда
См. также: Портал:Физика

Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоёмкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • В задачах диффузии или теплопроводности в жидкостях и газах, находящихся в движении, вместо уравнения диффузии применяется уравнение переноса , расширяющее уравнение диффузии на тот случай, когда пренебрежением макроскопическим движением недопустимо.
  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

∂ φ (r , t) ∂ t = ∇ ⋅ [ D (φ , r) ∇ φ (r , t) ] , {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\nabla \cdot {\big [}D(\varphi ,\mathbf {r})\ \nabla \varphi (\mathbf {r} ,t){\big ]},}

где φ(r , t ) - плотность диффундирующего вещества в точке r и во время t и D (φ, r ) - обобщённый коэффициент диффузии для плотности φ в точке r ; ∇ - оператор набла . Если коэффициент диффузии зависит от плотности - уравнение нелинейно, в противном случае - линейно.

Если D - симметричный положительно определённый оператор , уравнение описывает анизотропную диффузию:

∂ φ (r , t) ∂ t = ∑ i = 1 3 ∑ j = 1 3 ∂ ∂ x i [ D i j (φ , r) ∂ φ (r , t) ∂ x j ] . {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\sum _{i=1}^{3}\sum _{j=1}^{3}{\frac {\partial }{\partial x_{i}}}\left.}

Если D постоянное, то уравнение сводится к линейному дифференциальному уравнению:

∂ ϕ (r , t) ∂ t = D ∇ 2 ϕ (r , t) , {\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=D\nabla ^{2}\phi (\mathbf {r} ,t),}

История происхождения

Нестационарное уравнение

Нестационарное уравнение диффузии классифицируется как параболическое дифференциальное уравнение . Оно описывает распространение растворяемого вещества вследствие диффузии или перераспределение температуры тела в результате теплопроводности .

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D {\displaystyle D} уравнение имеет вид:

∂ ∂ t c (x , t) = ∂ ∂ x D ∂ ∂ x c (x , t) + f (x , t) . {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)={\frac {\partial }{\partial x}}D{\frac {\partial }{\partial x}}{c(x,\;t)}+f(x,\;t).}

При постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (x , t) = D ∂ 2 ∂ x 2 c (x , t) + f (x , t) , {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)=D{\frac {\partial ^{2}}{\partial x^{2}}}{c(x,\;t)}+f(x,\;t),}

где c (x , t) {\displaystyle c(x,\;t)} - концентрация диффундирующего вещества, a f (x , t) {\displaystyle f(x,\;t)} - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

∂ ∂ t c (r → , t) = (∇ , D ∇ c (r → , t)) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=(\nabla ,\;D\nabla c({\vec {r}},\;t))+f({\vec {r}},\;t),}

где ∇ = (∂ x , ∂ y , ∂ z) {\displaystyle \nabla =(\partial _{x},\;\partial _{y},\;\partial _{z})} - оператор набла , а (,) {\displaystyle (\;,\;)} - скалярное произведение. Оно также может быть записано как

∂ t c = d i v (D g r a d c) + f , {\displaystyle \partial _{t}c=\mathbf {div} \,(D\,\mathbf {grad} \,c)+f,}

а при постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (r → , t) = D Δ c (r → , t) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=D\Delta c({\vec {r}},\;t)+f({\vec {r}},\;t),}

где Δ = ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 {\displaystyle \Delta =\nabla ^{2}={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}} - оператор Лапласа .

n -мерный случай

N {\displaystyle n} -мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n {\displaystyle n} -мерные версии соответствующих операторов:

∇ = (∂ 1 , ∂ 2 , … , ∂ n) , {\displaystyle \nabla =(\partial _{1},\;\partial _{2},\;\ldots ,\;\partial _{n}),} Δ = ∇ 2 = ∂ 1 2 + ∂ 2 2 + … + ∂ n 2 . {\displaystyle \Delta =\nabla ^{2}=\partial _{1}^{2}+\partial _{2}^{2}+\ldots +\partial _{n}^{2}.}

Это касается и двумерного случая n = 2 {\displaystyle n=2} .

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

Φ = − ϰ ∂ c ∂ x {\displaystyle \Phi =-\varkappa {\frac {\partial c}{\partial x}}} (одномерный случай), j = − ϰ ∇ c {\displaystyle \mathbf {j} =-\varkappa \nabla c} (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

∂ c ∂ t + ∂ Φ ∂ x = 0 {\displaystyle {\frac {\partial c}{\partial t}}+{\frac {\partial \Phi }{\partial x}}=0} (одномерный случай), ∂ c ∂ t + d i v j = 0 {\displaystyle {\frac {\partial c}{\partial t}}+\mathrm {div} \,\mathbf {j} =0} (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).
  • Также предполагается, что на поток диффундирующего вещества (примеси) не действуют никакие внешние силы, в том числе сила тяжести (пассивная примесь).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n {\displaystyle n} -мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c {\displaystyle c} в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c (x , t) = ∫ − ∞ + ∞ c (x ′ , 0) c f (x − x ′ , t) d x ′ = ∫ − ∞ + ∞ c (x ′ , 0) 1 4 π D t exp ⁡ (− (x − x ′) 2 4 D t) d x ′ . {\displaystyle c(x,\;t)=\int \limits _{-\infty }^{+\infty }c(x",\;0)c_{f}(x-x",\;t)\,dx"=\int \limits _{-\infty }^{+\infty }c(x",\;0){\frac {1}{\sqrt {4\pi Dt}}}\exp \left(-{\frac {(x-x")^{2}}{4Dt}}\right)\,dx".}

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

− (∇ , D ∇ c (r →)) = f (r →) . {\displaystyle -(\nabla ,\;D\nabla c({\vec {r}}))=f({\vec {r}}).} Δ c (r →) = − f (r →) D , {\displaystyle \Delta c({\vec {r}})=-{\frac {f({\vec {r}})}{D}},} Δ c (r →) = 0. {\displaystyle \Delta c({\vec {r}})=0.}

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и , удовлетворяющее условию u (x , t 0) = φ (x) (− ∞ < x < + ∞) {\displaystyle u(x,\;t_{0})=\varphi (x)\quad (-\infty , где - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области − ∞ ⩽ x ⩽ + ∞ {\displaystyle -\infty \leqslant x\leqslant +\infty } и t ⩾ t 0 {\displaystyle t\geqslant t_{0}} , удовлетворяющее условиям

{ u (x , t 0) = φ (x) , (0 < x < ∞) u (0 , t) = μ (t) , (t ⩾ t 0) {\displaystyle \left\{{\begin{array}{l}u(x,\;t_{0})=\varphi (x),\quad (0

где φ (x) {\displaystyle \varphi (x)} и μ (t) {\displaystyle \mu (t)} - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0 ⩽ x ⩽ l {\displaystyle 0\leqslant x\leqslant l} и − ∞ < t {\displaystyle -\infty , удовлетворяющее условиям

{ u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , {\displaystyle \left\{{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right.}

где и - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u t = a 2 u x x + f (x , t) , 0 < x < l , 0 < t ⩽ T {\displaystyle u_{t}=a^{2}u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f (x , t) = 0 {\displaystyle f(x,\;t)=0} , то такое уравнение называют однородным , в противном случае - неоднородным .

u (x , 0) = φ (x) , 0 ⩽ x ⩽ l {\displaystyle u(x,\;0)=\varphi (x),\quad 0\leqslant x\leqslant l} - начальное условие в момент времени t = 0 {\displaystyle t=0} , температура в точке x {\displaystyle x} задается функцией φ (x) {\displaystyle \varphi (x)} . u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , } 0 ⩽ t ⩽ T {\displaystyle \left.{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right\}\quad 0\leqslant t\leqslant T} - краевые условия. Функции μ 1 (t) {\displaystyle \mu _{1}(t)} и μ 2 (t) {\displaystyle \mu _{2}(t)} задают значение температуры в граничных точках 0 и l {\displaystyle l} в любой момент времени t {\displaystyle t} .

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай ( α i 2 + β i 2 ≠ 0 , (i = 1 , 2) {\displaystyle \alpha _{i}^{2}+\beta _{i}^{2}\neq 0,\;(i=1,\;2)} ).

α 1 u x (0 , t) + β 1 u (0 , t) = μ 1 (t) , α 2 u x (l , t) + β 2 u (l , t) = μ 2 (t) . {\displaystyle {\begin{array}{l}\alpha _{1}u_{x}(0,\;t)+\beta _{1}u(0,\;t)=\mu _{1}(t),\\\alpha _{2}u_{x}(l,\;t)+\beta _{2}u(l,\;t)=\mu _{2}(t).\end{array}}}

Если α i = 0 , (i = 1 , 2) {\displaystyle \alpha _{i}=0,\;(i=1,\;2)} , то такое условие называют условием первого рода , если β i = 0 , (i = 1 , 2) {\displaystyle \beta _{i}=0,\;(i=1,\;2)} - второго рода , а если α i {\displaystyle \alpha _{i}} и β i {\displaystyle \beta _{i}} отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция в пространстве D × [ 0 , T ] , D ∈ R n {\displaystyle D\times ,\;D\in \mathbb {R} ^{n}} , удовлетворяет однородному уравнению теплопроводности ∂ u ∂ t − a 2 Δ u = 0 {\displaystyle {\frac {\partial u}{\partial t}}-a^{2}\Delta u=0} , причем D {\displaystyle D} - ограниченная область. Принцип максимума утверждает, что функция u (x , t) {\displaystyle u(x,\;t)} может принимать экстремальные значения либо в начальный момент времени, либо на границе области D {\displaystyle D} .

Примечания

Уравнение теплопроводности для нестационарного случая

нестационарным , если температура тела зависит как от положения точки, так и от времени.

Обозначим через и = и (М , t ) температуру в точке М однородного тела, ограниченного поверхностью S , в момент времени t . Известно, что количество теплоты dQ , поглощаемой за время dt , выражается равенством

где dS − элемент поверхности, k − коэффициент внутренней теплопроводности, − производная функции и по направлению внешней нормали к поверхности S . Так как распространяется в направлении понижения температуры, то dQ > 0, если > 0, и dQ < 0, если < 0.

Из равенства (1) следует

Теперь найдем Q другим способом. Выделим элемент dV объема V , ограниченного поверхностью S . Количество теплоты dQ , получаемой элементом dV за время dt , пропорционально повышению температуры в этом элементе и массе самого элемента, т.е.

где плотность вещества, коэффициент пропорциональности, называемый теплоемкостью вещества.

Из равенства (2) следует

Таким образом,

где . Учитывая, что = , , получим

Заменяя правую часть равенства с помощью формулы Остроградского – Грина, получим

для любого объема V . Отсюда получаем дифференциальное уравнение

которое называют уравнением теплопроводности для нестационарного случая .

Если тело есть стержень, направленный по оси Ох , то уравнение теплопроводности имеет вид

Рассмотрим задачу Коши для следующих случаев.

1. Случай неограниченного стержня. Найти решение уравнения (3) (t > 0, ), удовлетворяющее начальному условию . Используя метод Фурье, получим решение в виде

− интеграл Пуассона.

2. Случай стержня , ограниченного с одной стороны. Решение уравнения (3), удовлетворяющее начальному условию и краевому условию , выражается формулой

3. Случай стержня , ограниченного с двух сторон. Задача Коши состоит, чтобы при х = 0 и х = l найти решение уравнения (3), удовлетворяющее начальному условию и двум краевым условиям, например, или .

В этом случае частное решение ищется в виде ряда

для краевых условий ,

и в виде ряда

для краевых условий .

Пример. Найти решение уравнения

удовлетворяющее начальным условиям

и краевым условиям .

□ Решение задачи Коши будем искать в виде

Таким образом,

Уравнение теплопроводности для стационарного случая

Распределение тепла в теле называют стационарным , если температура тела и зависит от положения точки М (х , у , z ), но не зависит от времени t , т.е.


и = и (М ) = и (х , у , z ).

В этом случае 0 и уравнение теплопроводности для стационарного случая обращается в уравнение Лапласа

которое часто записывают в виде .

Чтобы температура и в теле определялась однозначно из этого уравнения, нужно знать температуру на поверхности S тела. Таким образом, для уравнения (1) краевая задача формулируется следующим образом.

Найти функцию и , удовлетворяющую уравнению (1) внутри объема V и принимающую в каждой точке М поверхности S заданные значения

Эта задача называется задачей Дирихле или первой краевой задачей для уравнения (1).

Если на поверхности тела температура неизвестна, а известен тепловой поток в каждой точке поверхности, который пропорционален , то на поверхности S вместо краевого условия (2) будем иметь условие

Задача нахождения решения уравнения (1), удовлетворяющего краевому условию (3), называется задачей Неймана или второй краевой задачей .

Для плоских фигур уравнение Лапласа записывается в виде

Такой же вид имеет уравнение Лапласа и для пространства, если и не зависит от координаты z , т.е. и (М ) сохраняет постоянное значение при перемещении точки М по прямой, параллельной оси Oz .

Заменой , уравнение (4) можно преобразовать к полярным координатам

С уравнением Лапласа связано понятие гармонической функции. Функция называется гармонической в области D , если в этой области она непрерывна вместе со своими производными до второго порядка включительно и удовлетворяет уравнению Лапласа.

Пример. Найти стационарное распределение температуры в тонком стержне с теплоизолированной боковой поверхностью, если на концах стержня , .

□ Имеем одномерный случай. Требуется найти функцию и , удовлетворяющую уравнению и краевым условиям , . Общее уравнение указанного уравнения имеет вид . Учитывая краевые условия, получим

Таким образом, распределение температуры в тонком стержне с теплоизолированной боковой поверхностью линейно. ■

Задача Дирихле для круга

Пусть дан круг радиуса R с центром в полюсе О полярной системы координат. Надо найти функцию , гармоническую в круге и удовлетворяющую на его окружности условию , где − заданная функция, непрерывная на окружности. Искомая функция должна удовлетворять в круге уравнению Лапласа

Используя метод Фурье, можно получить

− интеграл Пуассона.

Пример. Найти стационарное распределение температуры на однородной тонкой круглой пластинке радиуса R , верхняя половина поддерживается при температуре , а нижняя – при температуре .

□ Если , то , а если , то . Распределение температуры выражается интегралом

Пусть точка расположеиа в верхнем полукруге, т.е. ; тогда изменяется от до , и этот интервал длины не содержит точек . Поэтому введем подстановку , откуда , . Тогда получим

Так правая часть отрицательна, то и при удовлетворяет неравенствам . Для этого случая получаем решение

Если же точка расположена в нижнем полукруге, т.е. , то интервал изменения содержит точку , но не содержит 0, и можно сделать подстановку , откуда , , Тогда для этих значений имеем

Проведя аналогичные преобразования, найдем

Так как правая часть теперь положительна , то . ■

Метод конечных разностей для решения уравнения теплопроводности

Пусть требуется найти решение уравнения

удовлетворяющее:

начальному условию

и краевым условиям

Итак, требуется найти решение уравнения (1), удовлетворяющее условиям (2), (3), (4), т.е. требуется найти решение в прямоугольнике, ограниченном прямыми , , , , если заданы значения искомой функции на трех его сторонах , , .

Построим прямоугольную сетку, образованную прямыми

− шаг вдоль оси Ох ;

− шаг вдоль оси Оt .

Введем обозначения:

Из понятия конечных разностей можно записать

аналогично

Учитывая формулы (6), (7) и введенные обозначения, запишем уравнение (1) в виде

Отсюда получим расчетную формулу

Из (8) следует, что если известны три значения к k -ом слое сетки: , , , то можно определить значение в (k + 1)-ом слое.

Начальное условие (2) позволяет найти все значения на прямой ; краевые условия (3), (4) позволяют найти значения на прямых и . По формуле (8) находим значения во всех внутренних точках следующего слоя, т.е. для k = 1. Значения искомой функции в крайных точках известны из граничных условий (3), (4). Переходя от одного слоя сетки к другому, определяем значения искомого решения во всех узлах сетки. ;

Теплопроводность - это один из видов теплопередачи. Передача тепла может осуществляться с помощью различных механизмов.

Все тела излучают электромагнитные волны. При комнатной температуре это в основном излучение инфракрасного диапазона. Так происходит лучистый теплообмен .

При наличии поля тяжести еще одним механизмом теплопередачи в текучих средах может служить конвекция . Если к сосуду, содержащему жидкость или газ, тепло подводится через днище, в первую очередь прогреваются нижние порции вещества, их плотность уменьшается, они всплывают вверх и отдают часть полученного тепла верхним слоям.

При теплопроводности перенос энергии осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.

В нашем курсе будет рассматриваться передача теплоты путем теплопроводности.

Рассмотрим сначала одномерный случай, когда температура зависит только от одной координаты х . Пусть две среды разделены плоской перегородкой толщины l (рис. 23.1). Температуры сред Т 1 и Т 2 поддерживаются постоянными. Опытным путем можно установить, что количество тепла Q , переданное через участок перегородки площадью S за время t равно

, (23.1)

где коэффициент пропорциональности k зависит от материала стенки.

При Т 1 > Т 2 тепло переносится в положительном направлении оси х , при Т 1 < Т 2 – в отрицательном. Направление распространения тепла можно учесть, если в уравнении (23.1) заменить (Т 1 - Т 2)/l на (- dT /dx ). В одномерном случае производная dT /dx представляет собой градиент температуры . Напомним, что градиент – это вектор, направление которого совпадает с направлением наиболее быстрого возрастания скалярной функции координат (в нашем случае Т ), а модуль равен отношению приращения функции при малом смещении в этом направлении к расстоянию, на котором это приращение произошло.

Чтобы придать уравнениям, описывающим перенос тепла, более общий и универсальный вид, ведем в рассмотрение плотность потока тепла j - количество тепла, переносимое через единицу площади в единицу времени

Тогда соотношение (23.1) можно записать в виде

Здесь знак «минус» отражает тот факт, что направление теплового потока противоположно направлению градиента температуры (направлению ее возрастания). Таким образом, плотность потока тепла является векторной величиной. Вектор плотности потока тепла направлен в сторону уменьшения температуры.

Если температура среды зависит от всех трех координат, то соотношение (23.3) принимает вид

где , - градиент температуры (е 1 , е 2 , е 3 - орты осей координат).

Соотношения (23.3) и (23.4) представляют основной закон теплопроводности (закон Фурье): плотность потока тепла пропорциональна градиенту температуры. Коэффициент пропорциональности k называется коэффициентом теплопроводности (или просто теплопроводностью). Т.к. размерность плотности потока тепла [j ] = Дж/(м 2 с), а градиента температуры [dT/dx ] = К/м, то размерность коэффициента теплопроводности [k] = Дж/(м×с×К).

В общем случае температура в различных точках неравномерно нагретого вещества меняется с течением времени. Рассмотрим одномерный случай, когда температура зависит только от одной пространственной координаты х и времени t ,и получим уравнение теплопроводности - дифференциальное уравнение, которому удовлетворяет функция T = T (x ,t ).

Выделим мысленно в среде малый элемент объема в виде цилиндра или призмы, образующие которого параллельны оси х , а основания перпендикулярны (рис 23.2). Площадь основания S , а высота dx . Масса этого объема dm = rSdx , а его теплоемкость c×dm где r - плотность вещества, с - удельная теплоемкость. Пусть за малый промежуток времени dt температура в этом объеме изменилась на dT . Для этого вещество в объеме должно получить количество тепла, равное произведению его теплоемкости на изменение температуры: . С другой стороны, dQ можно может поступить в объем только через основания цилиндра: (плотности потоков тепла j могут быть как положительными, так и отрицательными). Приравнивая выражения для dQ , получим

.

Заменяя отношения малых приращений соответствующими производными, придем к соотношению

. (23.5)

Подставим в формулу (23.5) выражение (23.3) для плотности потока тепла

. (23.6)

Полученное уравнение называется уравнением теплопроводности . Если среда однородна, и теплопроводность k не зависит от температуры, уравнение принимает вид

, (23.7)

где постоянная называется коэффициентом температуропроводности среды.

Уравнениям (23.6) – (23.8) удовлетворяет бесчисленное множество функций T = T (x ,t ).

Для выделения единственного решения уравнения теплопроводности необходимо к уравнению присоединить начальные и граничные условия.

Начальное условие состоит в задании распределения температуры в среде Т (х ,0) в начальный момент времени t = 0.

Граничные условия могут быть различными в зависимости от температурного режима на границах. Чаще всего встречаются ситуации, когда на границах заданы температура или плотность потока тепла как функции времени.

В ряде случаев в среде могут оказаться источники тепла. Теплота может выделяться в результате прохождения электрического тока, химических или ядерных реакций. Наличие источников тепла можно учесть введением объемной плотности энерговыделения q (x ,y ,z ), равной количеству теплоты, выделяемому источниками в единице объема среды за единицу времени. В этом случае в правой части уравнения (23.5) появится слагаемое q :

.

с начальными условиями

и граничными условиями

Решение этой задачи будем искать в виде ряда Фурье по системе собственных функций (94)

т.е. в форме разложения

считая при этом t параметром.

Пусть функции f (x , t ) является непрерывной и имеет кусочно-непрерывную производную 1-го порядка по х и при всех t >0 выполняются условия

Предположим теперь, что функции f (x , t ) и
можно разложить в ряд Фурье по синусам

, (117)

(118)

, (119)

. (120)

Подставим (116) в уравнение (113) и с учетом (117), получим

.

Это равенство выполняется тогда, когда

, (121)

или, если
, то это уравнение (121) можно записать в виде

. (122)

Пользуясь начальным условием (114) с учетом (116), (117) и (119) получаем, что

. (123)

Таким образом, для нахождения искомой функции
приходим к задаче Коши (122), (123) для обыкновенного неоднородного дифференциального уравнения первого порядка. Пользуясь формулой Эйлера можно записать общее решение уравнения (122)

,

а с учетом (123) решение задачи Коши

.

Следовательно, когда мы подставим значение этой функции в выражение (116), в итоге получим решение исходной задачи


(124)

где функции f (x , t ) и
определены формулами (118) и (120).

Пример 14. Найти решение неоднородного уравнения параболического типа

при начальном условии

(14.2)

и граничных условиях

. (14.3)

▲ Подберем сначала такую функцию , чтобы удовлетворяла граничным условиям (14.3). Пусть, например,  = xt 2 . Тогда

Следовательно, функция определяемая как

удовлетворяет уравнению

(14.5)

однородным граничным условиям

и нулевым начальным условиям

. (14.7)

Применяя метод Фурье для решения однородного уравнения

при условиях (14.6), (14.7), положим

.

Приходим к следующей задаче Штурма-Лиувилля:

,
.

Решая эту задачу, находим собственные значения

и соответствующие им собственные функции

. (14.8)

Решение задачи (14.5)-(14.7) ищем в виде ряда

, (14.9)

(14.10)

Подставив
из (14.9) в (14.5) получим

. (14.11)

Для нахождения функции T n (t ) разложим функцию (1-х ) в ряд Фурье по системе функций (14.8) на интервале (0,1):

. (14.12)

,

и из (14.11) и (14.12) получаем уравнение

, (14.13)

которое является обыкновенным неоднородным линейным дифференциальным уравнением первого порядка. Его общее решение найдем по формуле Эйлера

а с учетом условия (14.10), найдем решение задачи Коши

. (14.14)

Из (14.4), (14.9) и (14.14) находим решение исходной задачи (14.1)- (14.3)

Задания для самостоятельной работы

Решить начально-краевые задачи

3.4. Задача Коши для уравнения теплопроводности

В первую очередь рассмотрим задачу Коши для однородного уравнения теплопроводности.

удовлетворяющее

Начнем с того, что заменим переменные x и t на
и введем в рассмотрение функцию
. Тогда функции
будут удовлетворять уравнениям

где
- функция Грина, определяемая формулой

, (127)

и обладающая свойствами

; (130)

. (131)

Умножив первое уравнение на G * , а второе на и и затем сложив полученные результаты, получим равенство

. (132)

После интегрирования по частям равенства (132) по в пределах от -∞ до +∞ и пов пределах от 0 доt , получим

Если предполагать, что функция
и ее производнаяограничены при
, то в силу свойств (131) интеграл в правой части (133) равен нулю. Следовательно, можно записать

Заменив в этом равенстве на
, а
на
, получим соотношение

.

Отсюда, используя формулу (127) окончательно получим

. (135)

Формула (135) называется формулой Пуассона и определяет решение задачи Коши (125), (126) для однородного уравнения теплопроводности с неоднородным начальным условием.

Решение же задачи Коши для неоднородного уравнения теплопроводности

удовлетворяющее неоднородному начальному условию

представляет собой сумму решений:

где является решением задачи Коши для однородного уравнения теплопроводности. , удовлетворяющее неоднородному начальному условию, аявляется решением, удовлетворяющее однородному начальному условию. Таким образом, решение задачи Коши (136), (137) определяется формулой

Пример 15. Найти решение уравнения

(15.1)

для следующего распределения температуры стержня:

▲ Стержень является бесконечным, поэтому решение можно записать, используя формулу (135)

.

Так как
в интервале
равна постоянной температуре, а вне этого интервала температура равна нулю, то решение принимает вид

. (15.3)

Полагая в (15.3)
, получим

.

Поскольку

представляет собой интеграл вероятностей, то окончательное решение исходной задачи (13.1), (13.2) можно выразить формулой

.▲

Уравнение теплопроводности в однородной среде, как мы видели, имеет вид

Коэффициент внутренней теплопроводности, с - теплоемкость вещества и - плотность. Кроме уравнения (1), нужно иметь в виду начальное условие, дающее начальное распределение температуры и при

Если тело ограничено поверхностью (S), то на этой поверхности мы будем иметь и предельное условие, которое может быть различным, смотря по физическим обстоятельствам. Так, например, поверхность (S) может поддерживаться при определенной температуре, которая может и меняться с течением времени. В этом случае предельное условие сводится к заданию функции U на поверхности (S), причем эта заданная функция может зависеть и от времени t. Если температура поверхности не фиксирована, но имеется лучеиспускание в окружающую среду данной температуры то по закону Ньютона, правда, далеко не точному, поток тепла через поверхность (S) пропорционален разности температур окружающего пространства и поверхности тела (S). Это дает предельное условие вида

где коэффициент пропорциональности h называется коэффициентом внешней теплопроводности.

В случае распространения тепла в теле линейных размеров, т. е. в однородном стержне, который мы считаем расположенным вдоль оси вместо уравнения (1) мы будем иметь уравнение

При такой форме уравнения не учитывается, конечно, тепловой обмен между поверхностью стержня и окружающим пространством.

Уравнение (S) можно получить также из уравнения (1), предполагая U не зависящей от . Начальное условие в случае стержня